
Theor Chim Acta (1987) 72:277-289 

�9 Springer-Verlag 1987 

Problems and prospects in the ab initio treatment 
of pure and defective crystals* 

Cesare Pisani and Roberto Dovesi 

Institute of Theoretical Chemistry, University of Torino, Via Giuria 5, 1-10125 Torino, Italy 

(Received 6 June/Accepted June 18, 1987) 

Accurate Har t ree-Fock LCAO calculations for moderately complex crystal- 
line systems are now feasible; a number  of important applications may be 
envisaged in the areas of  material science and technology. Some critical aspects 
of the corresponding computer  schemes are discussed which are of funda- 
mental importance in determining the cost of  the computation. Data are 
provided concerning actual computations which are indicative of  the kind of 
periodic systems that can (or cannot) be treated at present. The result of  a 
perfect-crystal ab initio HF study can be used as an input for treating with 
the same approxiLmation local-defect problems, by use of  suitable embedding 
techniques. A scheme of this kind is presented, and its computational  implica- 
tions are discussed: due to the intrinsic complexity of  this problem, it may 
be foreseen that the study of defects in crystals will be a typical application 
of supercomputers in the area of quantum chemistry. 
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1. Introduction 

In the last ten years, a number  of  computer programs have been implemented 
for the ab initio calculation of total energy and ground state properties of  
crystalline systems. The development of increasingly powerful computers justifies 
this effort, since it makes it possible for such programs to gather new and valuable 
information on the chemical properties of  condensed matter. Wider and wider 
classes of  periodic systems, and a variety of  problems can be studied that are of 

* This paper was presented at the International Conference on 'The Impact of Supercomputers on 
Chemistry', held at the University of London, London, UK, 13-16 April 1987 
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interest from a technological or simply scientific point of view. As will be discussed 
in more detail in the following, having at hand the electronic wavefunction of 
the perfect crystal also allows local defects to be treated with the use of suitable 
embedding techniques. 

A few recent ab initio computations for periodic systems may be cited that are 
indicative of the state of the art and of the areas of application: 

(i) Dacarogna and Cohen [1] have studied the stability of lithium, sodium, and 
potassium in various crystal phases at different pressures. Total energies are 
calculated using an ab initio local-density (LD) pseudopotential method [2], and 
using as basis functions plane waves up to a cutoff energy of 5 or 7 a.u. 

(ii) A very accurate study of the structural and electronic properties of beryllium 
has been performed by Blaha and Schwarz [3] by means of the linearized- 
augmented-plane-wave method [4]. A LD exchange-and-correlation potential is 
adopted; however, no shape approximations to the charge density or to the 
potential are made, and all electrons are taken into account. 

(iii) The powerful and simple linear-muffin-tin-orbital method has been used 
by Lambrecht and Andersen [6] in conjunction with a LD approximation for 
studying the diamond-structure crystals C, Si, and Ge. It is shown that a minimal 
basis set is sufficient for an accurate calculation of a number of ground-state 
properties. 

(iv) The Hartree-Fock (HF)-LCAO program CRYSTAL (developed at our 
Institute in collaboration with Saunders, of SERC laboratories [7, 8]) has been 
used by Dovesi et al. for studying the properties of MgO (100) surfaces, both 
bare and CO covered [9, 10]. A slab model was adopted, comprising up to four 
atomic layers; comparison with the perfect crystal results allowed the authors to 
test the validity of the model, and to calculate surface formation energies. 

The examples above are illustrative of the variety of approaches that are currently 
adopted. In most cases, the Kohn-Sham [11] one-electron hamiltonian is used, 
with an LD approximation for the exchange and correlation effective potential. 
The local character of the approximate hamiltonian, and the inclusion of the 
correlation term in the self-consistent procedure makes these schemes to appear 
preferable to HF ones in the opinion of most solid state physicists. On the other 
hand, at variance with LD wavefunctions, the HF solution represents a well 
defined quantity with well understood characteristics; in principle, it may 
indefinitely be improved by using one of several schemes for removing the 
correlation error. Furthermore, if localized atomic orbitals (AO) are used as basis 
functions, one can exploit all the experience gathered in molecular quantum 
chemistry, and adopt the powerful algorithms developed in that context for the 
evaluation of one- and two-electron integrals [12]. For all these reasons, ab initio 
HF schemes are gaining importance in the quantum chemistry of condensed 
matter. 

The purpose of this communication is threefold. First, we shall discuss some 
critical aspects of the CRYSTAL program in order to show that sophisticated 
and highly specific algorithms are needed to make such computations 
economically feasible. Second, computational data concerning a few selected 
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crystalline systems are commented upon, so as to give an idea of which kind of 
systems can (or cannot) be treated at present, and what impact supercomputers 
may be expected to have in this field. Third, we shall describe the essential 
characteristics of an ab initio HF embedding scheme for the treatment of  local 
defects in crystals which is currently being implemented in our laboratory, and 
exploits much of the algebraic machinery embodied in CRYSTAL, plus, of  course, 
the solution for the perfect host crystal obtained by means of that program. 

2. The treatment of integral series in a L C A O - H F  scheme for crystals 

Figure 1 depicts the general mode of operation of CRYSTAL. The classification 
and evaluation of one- and two-electron integrals, and the calculation of the 
Fock, overlap, and density matrix are carried out in direct space; transformation 
to reciprocal space is performed only in order to obtain one-electron eigenvalues 
and eigenvectors, by carrying the Fock and overlap matrices to block-diagonal 
form. Four steps, labelled in Fig. 1 as ~, /3, % 6, characterize each stage of the 
self-consistent (SC) procedure: 

a) Reconstruction of  the Fock matrix in real space 

Because of translational symmetry, a matrix element such as (/xm[o~ [ un), between 
the /x th  AO in the crystal cell identified by the lattice vector m and the ~,th AO 
in cell n, depends only on/x, ~,, and on the relative position g = m - n of  the two 

Geometry and bosJs set input 

Symmetry ono]ysis 

C]ossiFicotion oF inteBrols 

Oo]cu]otion os one- end two-electron intoBro]s 

a) Reconstruction os F9 

  Co ou1ot on oF / \ 
~md P~ " / / \ / m Fo~,",or 
roconstruel fen tronsForm oF F9 

T) F(R) dio~onolizotlon 

Fig. 1. Scheme of the CRYSTAL program for perfect crystals. The computational  steps c~,/3, y, 6 of  
the SC stage are discussed in the text. The symbols included in the "SC wheel" are representative 
of  the matrices that are obtained from the various computational steps: direct space submatrices F g, 
Px, and reciprocal space submatrices F(k), A(k), E(k) 
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cells. The general matrix element of the Fock (or overlap, or density) matrix may 
g - -  therefore be labelled as F,v-(/x01o~lvg); each F ~ submatrix is of order p, the 

number of AOs in each cell. Later in this section, indications are given concerning 
the algorithms adopted for treating efficiently this computational step. 

fl ) Fourier transformation of F from direct to reciprocal space 

For each k vector within the Brillouin zone (BZ), the Fock submatrix of order 
p: F(k) = ~g F g exp (ik. g) is evaluated by direct summation. 

y) Diagonalization of the F(k ) submatrices 

This is the only step where submatrices of order p are individually treated, all 
other steps requiring (in principle) a summation over an infinite number of other 
submatrices. By solving the matrix equation F ( k ) A ( k ) =  S ( k ) A ( k ) E ( k ) ,  one 
obtains the eigenvalues E(k) and the eigenvectors A(k) which define the crystal- 
line orbitals exhibiting the translational symmetry properties described by the 
wavevector k. 

~ ) Determination of the Fermi energy and reconstruction 
of the density submatrices pt 

The problem of self-consistently determining the Fermi energy eF, and of recon- 
structing the density submatrices in direct space: 

f dka(k)*O(ev-e (k ) )A(k)  exp (ik. l) (1) p l = 2  
JB Z 

is a standard one in solid physics (see for instance [13]). The choice of  the 
sampling k points where the F(k) matrices are evaluated (step/3) and diagonal- 
ized (step y) is strictly related to the techniques employed for performing the 
integrals over the BZ involved in this step. 

As was stated in the introduction, it is not the purpose of this communication 
to analyze in detail all the steps of the computation. The characteristics and the 
general philosophy of the procedure are perhaps best recognized by closer 
examination of the way the F g matrix is reconstructed in step a. 

The expression for Fg~ is [7, 8]: 

g -  g g g g (2) F~,~ - T ~ + Z ~ +  C~,~+X~, 

where T and Z are the kinetic and nuclear attraction terms, while C and X are 
the Coulomb and exchange terms, to be determined self-consistently since they 
depend on the density matrix P (note that each F g matrix depends in principle 
on all pl submatrices!): 

g - -  ! C ~ - E  PAoE (I ~0 vglhhoh+l) (3) 
~p 1 h 

. g - -  l X . ~ - - O . 5 E E P A o  (txOAh]z,gph+l). (4) 
A p  1 h 
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A basis set of local functions (AO's) is adopted, each AO being described as a 
linear combination of gaussian type functions, so that standard quantum 
chemistry packages can be used for the evaluation of the integrals [12, 14, 15]. 
However, the infinite nature of the system and its high symmetry (translational 
and, in many cases, point symmetry) require and allow some new features with 
respect to molecular codes. Schematically, six points are worth mentioning, 
concerning the reconstruction of the Fock operator and the organization of the 
integral package: 

(i) Use of the point symmetry of the Fock operator 

Only an irreducible subset [16] F~ c of matrix elements are explicitly evaluated 
by summation of the terms appearing in Eq. (1), the others being obtained by 
rotation. 

(ii) Multipolar expansion of the shell charge distributions for the evaluation 
of long range Coulomb interactions 

The ! and h sums appearing in the Fock matrix (as well as the g one required 
for the Fourier transformation of the F matrix in step/3 and for the evaluation 
of total energy) extend in principle to the infinite set of translation vectors; in 
practice, the evaluation of the long range Coulomb interactions can be simplified 
according to the following scheme: 
a) define Mulliken shell charge distributions: 

p ~ ( r ) = s  " o , PApXA(r)xp(r ) - z~6(r- r~). 
h ~ s  p I 

b) reorder the Z and C contributions: 

f x , ~ ( r ) x v ( r ) l r -  r - h l - 'p '~(r ' )  d r  dr ' .  
~ ' 

(5) 

(6) 

c) apart from a few h vectors (say I to 100, according to the cell size, dimensional- 
ity of the system, exponents of the involved AOs) for which all the bielectronic 
integrals are evaluated individually according to Eq. (3) Ps is external to X~ xg: 
it can then be expanded in multipoles and the series can be evaluated "analyti- 
cally" to infinity, using Ewald techniques [17] combined with recursion formulae 
of the kind proposed by McMurchie and Davidson [14, 8]. 

As a result, the long range Coulomb contributions are evaluated through three 
center integrals (in the case of bulk MgO and using a split valence basis set [18] 
more than 1000 terms contribute to each shell distribution Ps). 

(iii) Truncation of the exchange series 

Equation (4) shows that the value of the bielectronic integrals decay exponentially 
with increasing modulus of the vectors h and h + l - g ;  at large distances the 
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leading term contributing to the Fock matrix is a "diagonal" one (that is h = 0; 
l=g; A=/x;  p = v ) :  

g ~ g X ~ -  P ~ ( ~ 0  ~0lvg vg). (7) 

The convergence of the X g series is then depending on the long range behavior 
of the density matrix, which can be shown [19, 20] to decay exponentially in 
insulators and semiconductors; for metallic systems an oscillatory smoothed 
behavior is observed [20, 21]. 

When a simple truncation criterion is adopted, corresponding to including in the 
calculation only those g and ! vectors such that tgl, Ill ~< ReX, a relatively rapid 
convergence of the series is obtained. For example, in the case of magnesium 
oxide (ionic, large gap), silicon (semiconductor, small gap) and aluminum (metal- 
lic) the truncation error on total energy is 0.00004, 0.0002 and 0.001 a.u./cell for 
R ex = 10 a.u. 

(iv) On the storage of the integrals 

According to points ii and iii, we must evaluate the bielectronc integrals of a sort 
of cluster (the "exact cluster"), whose shape and size depend on the involved 
distributions and on the required precision. When evaluating those integrals, we 
do not need to store them separately, but we can group together into symmetrized 
sums all those integrals that will be eventually multiplied by P factors that are 
translationally or rotationally equivalent: 

c p ~  n c ~  (8) 
Ap L 

G L  T v T v d GI D~,a, = E ~ - a ~ ' - o , ' - , ~ , ' o '  (9) 
A ' p '  I 

{a} {b} 
G! d~,,,p= Y~ (tzO vglahph+l)--0.5 E (IxO ahlvgph+l). (10) 

h h 

In Eqs. (8-10), capital bold letters indicate irreducible direct lattice vectors; in 
Eq. (9), L and l, the irreducible and the general vector of a star, are related by 
the point symmetry operator v, whose representation in the basis of the atomic 
orbitals is TL The h summation in Eq. (10) extends to the vectors of the "exact 
cluster". Only the symmetrized D sums need to be stored and processesd at each 
SCF cycle. The saving factor in terms of I /O and external storage is a function 
of the order of the point group, and of the extension of the h sums in Eq. (10); 
in the most favourable cases (three-dimensional high-symmetry small unit cell 
systems) it can be as large as two orders of magnitude. 

(v) Reordering the Coulomb sums 

In the McMurchie-Davidson scheme, the two interacting distributions (/x0 ug) 
and (Ahph+l) (see eq. (10)) are first expanded in Hermite polynomials times 
gaussian functions (HGTF) centered in the centroids of the distributions; the 
integrals between HGTF are then evaluated through recursion relations (14, 15). 
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Taking advantage of this structure, ,the first term in Eq. (10) can be reordered as 
follows: 

{-} 
d~ a  oc ,  (cout)=Y. Z E(12G; t)E(341; t')I(t, t," h) 

h g,t' 

{a} 

= Y. E(12G; t)E(341; t') • I(t, t'; h), (11) 
t,t '  h 

where E(t) is the tth expansion coefficient of the product of the two AOs in 
HGTF, and I is a Coulomb integral between HGTF. When the sum extends to 
many h vectors, the saving factor can be high because the expansion of the 
distributions is one of the rate determining steps of  the calculation of  the integrals. 

(vO The bipolar expansion 

A large fraction of the bielectronic integrals of the "exact cluster" refer to 
non-overlapping distributions, and can be approximated with a bipolar expansion 
[22]: 

(IxO vglhhph+l)= ~ y(/~vg; L; r)V(L, L'; r-r ')y(Apl; L'; r'), (12) 
L,L '  

where L-=(/, m) are the two quantum numbers characterizing the multipoles 
y(L)  of the distribution (/x0 vg), evaluated with respect to the centroid r, and 
V(L, L') is the coupling operator [in particular, V(0, 0) = j r -  r'[-~]. Multipoles 
can be evaluated through recursion relations, as shown in Ref. [8]. There are 
several advantages in using a bipolar expansion: 

a) due to the translational and point symmetry, only a small set of multipoles 
need to be evaluated; 

b) the order of the expansion can be chosen according to the importance of the 
integral and to the overall precision of the calculation; 

c) the heavy step is a matrix multiplication, which is easily vectorialized; 

d) in the case of the Coulomb sums, the same rearrangement as discussed in 
point v is possible; in this case the additional cost of an extra h vector in the 
sum is practically zero, because the evaluation of the coupling matrix V is very 
rapid. 

The efficiency of the bipolar expansion technique, which is currently being 
implemented in the code, is documented in the next section. 

As a final comment 1;o the structure of CRYSTAL, we would like to observe that 
it appears very well suited for operation with parallel supercomputers, with 
relatively small rearrangements. All time consuming steps (calculation and 
manipulation of lists of integrals or matrix diagonalizations) require essentially 
the same computation to be performed independently for different g lattice vectors 
or k wavevectors. 
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3. Examples of application: "small" and "large" systems 

Table 1 provides examples of "ext reme" and  " n o r m a l "  appl icat ions  of the 
CRYSTAL program. 

The d i a m o n d  calculat ion has been recently performed while trying to get as dose  

as possible to the H F  limit for subsequent  appl ica t ion  of correlat ion corrections;  

the basis set quali ty and  the numerica l  accuracy have therefore been  carried to 

the m a x i m u m  allowed refinement.  The n u m b e r  of two-electron integrals that need 
be calculated is enormous  because of the computa t iona l  condi t ions;  on the other 

hand,  use of the rich point  symmetry as described unde r  point  i v  in the preceding 
section, reduces to manageab le  propor t ions  the n u m b e r  N '  of  symmetrized D 

sums to be stored (the overall  saving factor is about  80). The computer  t ime 
required for the self consis tent  calculat ion is negligible with respect to integral 

evaluation.  

The po lysu lphur  ni tr ide calculat ion refers to current  work in tended  to explore 
the impor tance  of in terchain  interact ions in crystall ine conduct ing  polymers.  

According to present  s tandards  it is again an extreme calculat ion,  but  in a different 
sense with respect to the preceding one: there are many  atoms in the uni t  cell, 

some of them are second row ones, the po in t  symmetry is poor. Two basis sets 

Table 1. Examples of application of the CRYSTAL program. N c, N e• and N' are the number of 
two-electron Coulomb and exchange integrals, and of symmetrized D sums, respectively, in 10  6 units. 
S ~ and S ~ are the "overlap threshold" for the Coulomb and exchange series, that is the pseudocharge 
of the product distributions for the interacting electrons in Eqs. (3) and (4) below which the integral 
is disregarded. L is the maximum order in the multipolar expansion of the shell charge distribution 
(section 2, ii), R ex is the "exchange radius" (section 2, iii). t are the computation times in seconds 
and refer to a Hitachi M200 scalar computer 

Diamond 3-d ( S N ) ~  MgO 

Order of group 48 4 48 
Atoms per cell 2 8 2 
Basis set Optimized double- STO-3G [+d] Optimized 

zeta+ d AOs split-valence 
AOs per cell 30 56 [76] 18 
Comput. parameters 

S ex = S c 10  - 6  1 0  - 6  1 0  - 4  

R ex (A) 6.9 5.8 5.8 
L 4 4 4 

Calculation data 
Part I (integral eval.) 

N c 160 18 [60] 9 
N e• 150 21 [64] 7 
N' 4 9 [30] 0.3 
t 5500 700 [3700] 250 

Part II (SCF stage) 
Nk 29 20 8 
SCF cycles 14 9 10 
t 200 370 [1100] 20 
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have been tried. In the first case, a minimal STO-3G set has been employed; in 
the second, the mini[mal set has been supplemented by d-type AOs on sulphur 
for describing important hypervalent aspects of  the chemical bonds. In spite of 
the use of  few sampling k points, the self consistent stage takes an appreciable 
fraction of overall computer  time when the richer set is used, because of the large 
order (76) of  the F(k)  matrices. 

Magnesium oxide corresponds to a "normal"  calculation of good quality [23]. 
An optimized split-valence set is used which gives a total energy near the HF 
limit; however, the number of  two-electron integrals is not very large because 
the AOs are relatively short ranged. Furthermore, because of the rich point 
symmetry, there are only 200 000 symmetrized D sums to be stored and manipu- 
lated. The whole calculation takes only five minutes on a scalar computer. 

Table 1 shows that t]he cost of  the computation not only depends on the number 
of atoms in the unit cell and on the richness of the basis set, but also on the 
values adopted for the computational parameters which control the treatment of  
the Coulomb and exchange series and the reciprocal space integration (see section 
2). The total energy error associated with those parameters is about 10 -4  a.u. /atom 
for diamond and (SN)x and 10 3 a .u . /a tom for MgO, that is four to six orders 
of  magnitude larger than the "internal" or numerical error of standard molecular 
programs. 

With respect to the situation documented in Table 1, work is in progress in three 
main directions: 

a) extension of the performances and generalization of the program so as to be 
able to describe, at least with minimal basis sets, large unit cell systems (10-30 
atoms). This would allow the ab initio description of many interesting silicates 
(at the moment  studied with two body model potentials) and of complex surface 
phenomena in the slab approach;  

b) deeper understanding of basis-set effects and careful analysis of the most 
critical algorithms, in order to be able to get near the Har t ree-Fock limit for 
simple systems, while avoiding numerical instabilities; 

c) improvement  and speed-up of the program so as to obtain numerical accuracies 
in total energy to within 10-5-10 -6 a .u. /atom with no additional costs with respect 
to the present situation. This should avoid the tiresome and time consuming step 
of the calibration of all the computational parameters,  which is necessary at 
present for finding a compromise between accuracy and costs. 

To give an idea of this work, Table 2 reports a few data on MgO concerning 
CPU time, number  of bielectronic integrals to be computed, and convergence of 
total and kinetic energy toward the "exact"  result. The main difference with 
respect to the procedure used for the results reported in Table 1 is that, whenever 
it is possible, the bielectronic integrals of  the "exact"  or "cluster" zone have 
been approximated using a bipolar expansion whose L1 and L2 orders are chosen 
according to the weighted distance between the two centroids, the amount  of 
pseudocharge and the AO's quantum numbers involved. It appears that, with 
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Table 2. Dependence of total and kinetic energy of MgO bulk on the "severity" of the computational 
parameters. To simplify the discussion, only the overlap threshold S c adopted for the Coulomb 
integrals is reported; the other parameters of the calculation have been set to values insuring about 
the same convergence as SL Basis set, N c, N e• N' and t as in Table 1; N .t. 103 is the number of 
matrix elements F(txvG) to be defined. Energies in a.u. Numbers in parentheses are the bielectronic 
integrals approximated with the bipolar expansion. Last line refers to a calculation in which all the 
bielectronic integrals have been evaluated exactly 

S c N 1 N ~ N Cx N' time Total E. Kinetic E. 

10 3 1.7 1.6 2.2 0.2 46 -274.643920 274.676342 
(0.6) (0.9) 

10 -4 3.4 9 7 0.3 124 -274.664926 274.653463 
(5) (4) 

10 -5 4.8 46 25 0.8 223 -274 .664068 274.655232 
(38) (21) 

10 6 6.5 121 40 1.5 282 -274.664034 274.655389 
(110) (35) 

10 7 11.3 246 62 2.4 376 -274 .664032 274.655388 
(231) (56) 

10 7 11.3 246 62 2.4 3740 -274.664034 274.655384 

increasing severity of the t runca t ion  criteria, the n u m b e r  of integrals that can be 

approximated  with low order expansions  also increases, and the addi t ional  cost 

is progressively smaller. At least for this simple high-symmetry system, the target 
of a 10 .6 a.u. precision on total energy is at hand.  

4. The ab initio treatment of defective crystals 

A n u m b e r  of embedd ing  schemes have been  proposed in past and recent years 

for the study of local defects in crystals (see for instance [24-27]). However,  

their appl ica t ion in con junc t ion  with ab initio hami l ton ians  for describing the 
chemical properties of the defective region [26] still represent  except ional  events 
rather than s tandard  practice. In order to documen t  the intr insic complexi ty of 
this problem,  we shall present  here some aspects of an H F  ab initio embedd ing  

program that is current ly being implemented  at our  Institute.  A "per turbed  

cluster" approach to the problem [27] is used, and the work equat ions [28] are 
a general izat ion of those previously used in con junc t ion  with empirical  or semi- 

empirical  hami l ton ians  [29]. One starts from the defini t ion of the system Green 

operator  ~d(z): 

~ ( z ) ~ ( z )  = , r  [2~(z) = z 4 -  o%] (13) 

(~- is the Fock operator) ,  and  represents this equat ion  in an AO basis set, 

par t i t ioned into a subset  C that defines a cluster a round  the defect, and a 
complementa ry  set D that defines the inden ted  infinite crystal (that is, excluding 

the cluster region).  Simple algebraic man ipu la t ions  give the exact equat ions:  

GCC = ~ c c  + ~CC Qcc, GC, DQDc~cc  (14) 

GcD = _~CCQcDGDD" (15) 
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Here G C C ( z ) = [ Q c c ( Z ) ]  - '  is the Green function for the "pseudo-isolated" 
cluster, that is, referring to a C system with no coupling elements with the 
indented crystal, but with a local hamiltonian Fcc  which reflects the presence 
of the surrounding crystal. After introducing the sole assumption that the Green 
function in D is essentially unaltered by the presence of the defect: 

GDD(z) = GDDf(z) (16) 

(the superscript f refers to unperturbed-host-crystal quantities), and integrating 
along a contour y in the complex z plane encompassing all poles on the left of 
the Fermi energy eF, the following equations are obtained for the density 
matrix P: 

pCC p c c  -t- ~ c D D  - ~ C C D D  - " C 
= [ A j o [ d / d e M  ({i )]A~D+A}DM (@T}D 

y 

+ + 
JU'D~ ~ ' D  

_ _  cc ~ c c  ~ . c c  (17) 
= Pclust  + a c o u p l  - a o v l p  

C . y D D  - ~ C  ~ D D D f  ~ D C D  ~_ C D  p C .  = - E  A}DN (ej) - "~D* -- . . . .  p,-- Roy,p- (18) 
J 

In these equations: 

_ fiCC CC �9 Pclu~t Is the density matrix of the pseudo-isolated cluster, obtained using 
the eigenvectors I~> and eigenvalues gj of the cluster hamiltonian Fcc , and 
limiting the occupied manifold to eF; 

- the matrices Aj and Tj are defined in terms of Fcc, FeD, Scc, SCD (Fock and 
overlap submatrices), and of [15j> and gj [27]; - the energy dependent "coupling 
matrix" M"D(e) is obtained from a knowledge of the projected density of states 
pf(e) of the host defect-free crystal (this information comes from the solution 
for the perfect host crystal); 

- B c = ( S c c ) - ' S c o  is zero if an orthogonal basis set is used. 

Note (Eq. (17)) that the cluster density matrix pCC is obtained by adding to the 
pseudo-isolated-cluster contribution cc Pdust energy dependent terms (one per each 

cc eigenvalue gj), and a constant t e rm  Povlp; the latter is the only one that is left 
when a closed shell system is considered, treated with a minimal basis set, and 
disappears if an orthogonal basis set is adopted. Expression (18) for p C ,  has a 
similar structure, except of course for the fact that no "zero" term may exist. 

Figure 2 reproduces the general scheme of the computation. Comparison with 
Fig. 1 shows that in the present case all computations are performed in direct 
space. However, an "embedding step" (step 6) is now present, where information 
from the host crystal solution is used for realizing the coupling between the 
cluster and the indented crystal. 

Let us consider again in some detail step c~ of the general SC cycle, where the 
submatrices Fee  and FeD are reconstructed (the latter is needed for the evaluation 
of pCC and pCD, se, e above). 
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Solution o? host c,rystol problem 
.... > Projected density o? stotes p~ 

Oe?inition o? de?ectJve crystal 
Correspondence cluster-host crystal 
Calculation os F const 

Calculation o? new integrals 

a) Reconstruction of F c and Fco 
o 

density m o t r i x : ~  

P = Pclust+ 6 ~ ~CF ,], (b/3)Diagonolizotion a? F c 
Pcoupl+Povlp I . . . .  / 

C ~-- C C 

^DReconstruction oF Pclust 

Fig. 2. Scheme of the EMBED program for defective crystals. The computational steps % fl, y, 6 of 
the SC stage are discussed in the text 

The general element F ~ ( y  c C, /x ~ C or D)  may be expressed as a sum of a 
constant part  and of a variable one that depends on the local part of the density 
matrix (pCC, pCO, and pDC) and is therefore redefined during the SC procedure: 

v a t  = F ~  + F r ~  F,,/tt . . . .  t (19) 

(note that the infinite submatrix pDD, because of the fundamental  assumption, 
Eq. (16), is fixed at the host-crystal value pODS). F~n~t contains the kinetic term, 
the nuclear attraction terms, and the Coulomb and exchange interaction of the 
(y/~) distribution with all (88') electron charge distributions associated with the 
indented crystal: 

F~7 st= T~,. +Z~,~ + E Pfaa,[(y~laa')-�89 (20) 
86' 

The two-electron repulsion terms and the corresponding nuclear attraction terms 
may be combined together and dealt with using the same strategy as previously 
outlined for the perfect host crystal. Translational symmetry is however lost in 
the present case, partially at least: if either y or ~ refer to an impurity atom or 
to a crystal atom displaced with respect to its ideal site, the corresponding integrals 
must be evaluated afresh. Computat ion times may become very long if the proper 
defect region is relatively large. This difficulty is there, no matter which embedding 
scheme is adopted, if the field created in the defect region by the surrounding 
host crystal must accurately be evaluated. 

As far as the SC-dependent part  F T M  is concerned, it must be observed that 
its F~a/~ part comprises in principle an infinite number  of elements because of 
the infinite size of the D set. Again, efficient truncation criteria must be adopted, 
similar to those used in CRYSTAL. In spite of that, preliminary tests concerning 
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impurities in graphite show that thousands of matrix elements of FeD must be 
self-consistently redefined (the tolerances adopted correspond to a numerical 
precision of a few millihartree/atom). It is evident that schemes relying on the 
hypothesis that the perturbative potential is localized in a strict vicinity of the 
defect are rather unrealistic. 

Of course, throughout the computation advantage can be taken of the point 
symmetry that is left in the system after the defect is introduced: the problem 
may in fact be factored out into separate ones concerning the different irreducible 
representations of the point group [24]. 

The ab initio study of point defects in crystals is still in its infancy, and enormous 
progresses can be expected by skilful application of suitable algorithms, of the 
kind already operatJive in the treatment of  perfect crystals. In any event, because 
of its intrinsic complexity, the problem will require huge computational effort: 
it can therefore be expected to represent a typical application of supercomputers 
in the years to come. 
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